Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells

Authors: Jian Mei; Xuan Meng; Xingwang Tang; Heran Li; Hany Hasanien; Mohammed Alharbi; Zhen Dong; +5 Authors

An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells

Abstract

Accurate and reliable mathematical modeling is essential for the optimal control and performance analysis of polymer electrolyte membrane fuel cell (PEMFC) systems, which are mainly implemented based on accurate parameter estimation. In this paper, a multi-strategy tuna swarm optimization (MS-TSO) is proposed to estimate the parameters of PEMFC voltage models and compare them with other optimizers such as differential evolution, the whale optimization approach, the salp swarm algorithm, particle swarm optimization, Harris hawk optimization and the slime mould algorithm. In the optimizing routine, the unidentified factors of the PEMFCs are used as the decision variables, which are optimized to minimize the sum of square errors between the estimated and measured data. The optimizers are examined based on three PEMFC datasets including BCS500W, NedStackPS6 and harizon500W as well as a set of experimental data which are measured using the Greenlight G20 platform with a 25 cm2 single cell at 353 K. It is confirmed that MS-TSO gives better performance in terms of convergence speed and accuracy than the competing algorithms. Furthermore, the results achieved by MS-TSO are compared with other reported approaches in the literature. The advantages of MS-TSO in ascertaining the optimum factors of various PEMFCs have been comprehensively demonstrated.

Keywords

Technology, T, tuna swarm optimization, proton exchange membrane fuel cell (PEMFC), metaheuristic algorithm, parameter estimation, multi-strategy, Amphlett model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
gold