
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Solar-Powered Combined Cooling, Heating, and Power Energy System with Phase-Change Material and Water Electrolysis: Thermo-Economic Assessment and Optimization


Sadegh Mehranfar

Amin Mahmoudzadeh Andwari
doi: 10.3390/en17133309
A solar-powered combined cooling, heating, and power (CCHP) plant integrated with a water electrolysis unit is investigated in terms of energy, exergy, and exergo-economic (3E) assessments. A comprehensive parametric study and optimization is conducted following the thermodynamic and exergo-economic assessment of the proposed system to evaluate the key performance parameters of the system for efficiency and economic factors. This system employs a heliostat field and a receiver tower by taking advantage of thermal energy from the sun and produces a continuous energy supply with an integrated phase-change material (PCM) tank to store the heat. In addition, a supercritical CO2 Rankine cycle (RC), an ejector refrigeration cooling (ERC) system, and a PEM water electrolyzer are coupled to produce cooling, heating, power, and hydrogen. Thermodynamic analysis indicates that the system exergy efficiency and energy efficiency are improved to 33.50% and 40.61%, respectively, while the total cost rate is 2875.74 USD/h and the total product cost per exergy unit is 25.65 USD/GJ. Additionally, the system produces a net generated power, heating load, and cooling load of 11.70, 13.92, and 2.60 MW, respectively, and a hydrogen production rate of 12.95 g/s. A two-objective optimization approach utilizing a non-dominated sorting genetic algorithm (NSGA) was performed, demonstrating that the system’s ideal design point offers a cost rate of 1263.35 USD/h and an exergetic efficiency of 34.17%.
- Iran University of Science and Technology Iran (Islamic Republic of)
- Iran University of Science and Technology Iran (Islamic Republic of)
- University of Oulu Finland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
