
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Systematic Design of Cathode Air Supply Systems for PEM Fuel Cells

To increase system efficiency and power density, the cathode air path of Polymer Electrolyte Membrane Fuel Cells (PEM FCs) is supercharged using electrically driven air bearing centrifugal compressors. To maximize system efficiency, the cathode air supply system must be designed to optimally fulfill the requirements of the PEM FC system while obeying the design constraints imposed by the electric compressor drive and the air bearing system. This article proposes a dedicated design process for PEM FC cathode air compressors. Using physically based component models, the impact of varying cathode stoichiometry and operating pressure on PEM FC system performance is assessed to derive the system efficiency optimal compressor operating strategy. The centrifugal compressor stage is subsequently designed to achieve optimum efficiency on this operating line using meanline performance models and three-dimensional computational fluid dynamics simulations. Novel test procedures and measurement equipment are employed to validate the compressor design. The design process is demonstrated using a PEM FC passenger car application as an example. It is shown that significant performance and efficiency gains are achievable when tailoring the cathode air supply system to the application at hand. In the given example, effective compressor efficiency is increased by Δηeff = 12%. Along with an optimized compressor operating strategy, an overall PEM FC system efficiency gain of Δηsys = 2.7% is achieved.
- RWTH Aachen University Germany
Technology, meanline performance model, T, PEM FC system simulation, preliminary design, 620, PEM FC model, operating strategy optimization, centrifugal compressor, info:eu-repo/classification/ddc/620
Technology, meanline performance model, T, PEM FC system simulation, preliminary design, 620, PEM FC model, operating strategy optimization, centrifugal compressor, info:eu-repo/classification/ddc/620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
