Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Building Envelope Materials on Energy Usage and Performance of Evaporative Cooling System in Residential Building

Authors: Surakit Thongsuk; Panapong Songsukthawan; Praikanok Lertwanitrot; Santipont Ananwattanaporn; Suntiti Yoomak; Chaichan Pothisarn;

Impact of Building Envelope Materials on Energy Usage and Performance of Evaporative Cooling System in Residential Building

Abstract

A large proportion of building energy consumption in tropical countries like Thailand primarily comes from air conditioning systems used to maintain the comfort level of building occupants. This paper aims to evaluate the performance of an alternative cooling system based on the evaporative principle in terms of thermal characteristics and energy consumption. A simulation model using computational fluid dynamics (CFD) software ANSYS version 16.0 and an actual experimental setup at the laboratory level were built to verify the results of the proposed cooling system. Additionally, factors that influence performance, such as components of the building envelope and the building’s orientation, are considered. This research aims to demonstrate the impact of building envelope material and building characteristics on the energy usage in air conditioning systems and to propose an energy-efficient cooling system. The results demonstrate that the proposed cooling system can reduce the temperature inside the building. However, the characteristics of the building also affect the energy performance. Thus, the proposed cooling system, in combination with an efficient envelope material, can achieve energy savings of around 35–43%. Therefore, a combination of the proposed cooling system and optimal building design can ensure comfort for building occupants while saving energy.

Keywords

Technology, T, evaporative cooling system, building envelope, energy usage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold