
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling

doi: 10.3390/en17164140
handle: 20.500.14243/511166
Solid oxide fuel cells (SOFC) could facilitate the green energy transition as they can produce high-temperature heat and electricity while emitting only water when supplied with hydrogen. Additionally, when operated with natural gas, these systems demonstrate higher thermoelectric efficiency compared to traditional microturbines or alternative engines. Within this context, although digitalisation has facilitated the acquisition of extensive data for precise modelling and optimal management of fuel cells, there remains a significant gap in developing digital twins that effectively achieve these objectives in real-world applications. Existing research predominantly focuses on the use of machine learning algorithms to predict the degradation of fuel cell components and to optimally design and theoretically operate these systems. In light of this, the presented study focuses on developing digital twin-oriented models that predict the efficiency of a commercial gas-fed solid oxide fuel cell under various operational conditions. This study uses data gathered from an experimental setup, which was employed to train various machine learning models, including artificial neural networks, random forests, and gradient boosting regressors. Preliminary findings demonstrate that the random forest model excels, achieving an R2 score exceeding 0.98 and a mean squared error of 0.14 in estimating electric efficiency. These outcomes could validate the potential of machine learning algorithms to support fuel cell integration into energy management systems capable of improving efficiency, pushing the transition towards sustainable energy solutions.
Technology, T, machine learning, digital twin, solid oxide fuel cell, hydrogen, energy
Technology, T, machine learning, digital twin, solid oxide fuel cell, hydrogen, energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
