
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework

doi: 10.3390/en17164145
The intermittent and stochastic nature of Renewable Energy Sources (RESs) necessitates accurate power production prediction for effective scheduling and grid management. This paper presents a comprehensive review conducted with reference to a pioneering, comprehensive, and data-driven framework proposed for solar Photovoltaic (PV) power generation prediction. The systematic and integrating framework comprises three main phases carried out by seven main comprehensive modules for addressing numerous practical difficulties of the prediction task: phase I handles the aspects related to data acquisition (module 1) and manipulation (module 2) in preparation for the development of the prediction scheme; phase II tackles the aspects associated with the development of the prediction model (module 3) and the assessment of its accuracy (module 4), including the quantification of the uncertainty (module 5); and phase III evolves towards enhancing the prediction accuracy by incorporating aspects of context change detection (module 6) and incremental learning when new data become available (module 7). This framework adeptly addresses all facets of solar PV power production prediction, bridging existing gaps and offering a comprehensive solution to inherent challenges. By seamlessly integrating these elements, our approach stands as a robust and versatile tool for enhancing the precision of solar PV power prediction in real-world applications.
- Tuskegee University United States
- University of Freiburg Germany
- Polytechnic University of Milan Italy
- Al-Balqa` Applied University Jordan
- Centre de Recherche sur les Risques et les Crises France
Technology, T, solar photovoltaic power, power prediction, 620, [SPI]Engineering Sciences [physics], systematic and integrative framework, prediction accuracy, renewable energy sources, grid management
Technology, T, solar photovoltaic power, power prediction, 620, [SPI]Engineering Sciences [physics], systematic and integrative framework, prediction accuracy, renewable energy sources, grid management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
