Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2024
Data sources: Apollo
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with High-Temperature Gas-Cooled Reactors

Authors: Bixiong Luo; Li Zhang; Wei Li; Yanlin Su; Yongjian Ye; Chenyu Wang; Yixuan Liu; +2 Authors

Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with High-Temperature Gas-Cooled Reactors

Abstract

To mitigate global warming, phasing out coal in the global energy system orderly and rapidly is an important near-term strategy. However, the majority of coal-fired plants in China have operated for less than 15 years. Accelerated coal power plant retirements would lead to substantial asset stranding. Coal-to-nuclear (C2N) technology offers a potential solution by replacing coal boilers in existing coal-fired plants with nuclear reactors. In this study, the G4-ECONS model was used to assess the economics of repowering a 600 MW supercritical coal-fired power plant with two 272 MWe high-temperature gas-cooled reactors. The timeline for the C2N project and the additional cost of dispatching electricity from the grid during retrofitting were discussed. Results showed that the C2N total capitalized costs are 19.4% (baseline estimate, USD 5297.6/kW) and 11.1% (conservative estimate, USD 5847.2/kW) lower than the greenfield project (USD 6576.5/kW), respectively. And C2N projects need to reduce LUEC by at least 20% to become competitive. This study can inform engineering design decisions leading to more precise and cost-effective C2N projects.

Country
United Kingdom
Related Organizations
Keywords

Technology, T, high-temperature gas-cooled reactor, 4004 Chemical Engineering, economic assessment, coal to nuclear, 7 Affordable and Clean Energy, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold