Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at Low Loads with Concentration and Temperature Stratified Combustion

Authors: Min Zhang; Wanhua Su; Zhi Jia;

Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at Low Loads with Concentration and Temperature Stratified Combustion

Abstract

The approach for achieving efficient and clean combustion in a diesel–natural gas (NG) heavy-duty engine at low loads was studied by computational fluid dynamics simulation. This study proposed the concentration and temperature-stratified combustion technology and clarified its mechanism. The results revealed that different stratified combustions can be organized by controlling the pressures, timings, and durations of diesel and NG injections, and stratified combustion can be classified into moderate, lean, and rich stratified combustion modes. Efficient and clean combustion can be realized simultaneously at low engine loads: the gross indicated thermal efficiency (ITEg) of engine breakthrough was improved to 47.9%, and the indicated-specific emissions of unburned hydrocarbon (ISUHC) were greatly reduced to 1.6 g/kWh, while the indicated-specific emissions of nitrogen oxide (ISNOx) remained at 0.6 g/kWh. Moreover, the detailed analysis of three typical stratified combustion modes demonstrates that coupling control of the concentration and temperature of the charge is the key to obtaining excellent engine performance. Most of the NG-stratified mixture should burn in the react ratio range of 0.4 to 0.8 for low unburned hydrocarbon emissions, low nitrogen oxides emissions, and rapid combustion. The proper temperature stratification should ensure that a high-temperature charge is around the over-lean NG mixture. This study can provide the fundamentals of stratified combustion control and feasible solutions for commercial applications of NG engines.

Related Organizations
Keywords

Technology, T, low engine loads, natural gas, numerical simulation, direct injection, stratified combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold