Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Transient Stability through a Novel Algorithm with Optimization under Contingency Conditions

Authors: Kumar Reddy Cheepati; Suresh Babu Daram; Ch. Rami Reddy; T. Mariprasanth; Basem Alamri; Mohammed Alqarni;

Analysis of Transient Stability through a Novel Algorithm with Optimization under Contingency Conditions

Abstract

Predicting the need for modeling and solutions is one of the largest difficulties in the electricity system. The static-constrained solution, which is not always powerful, is provided by the Gradient Method Power Flow (GMPF). Another benefit of using both dynamic and transient restrictions is that GMPF will increase transient stability against faults. The system is observed under contingency situations using the Dynamic Stability for Constrained Gradient Method Power Flow (DSCGMPF). The population optimization technique is the foundation of a recent algorithm called Training Learning Based Optimization (TLBO). The TLBO-based approach for obtaining DSCGMPF is implemented in this work. The total system losses and the cost of the individual generators have been optimized. Analysis of the stability limits under contingency conditions has been conducted as well. To illustrate the suggested approaches, a Standard 3 machine 5-bus system is simulated using the MATLAB 2022B platform.

Keywords

transient stability, Technology, gradient method power flow, dynamic stability, T, training learning-based optimization, constrained gradient method power flow, contingency condition

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research