
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes

doi: 10.3390/en17184681
Energy utilisation in residential dwellings is stochastic and can worsen the issue of operational planning for energy provisioning. Additionally, planning with intermittent energy sources exacerbates the challenges posed by the uncertainties in energy utilisation. In this work, machine learning regression schemes (random forest and decision tree) are used to train a forecasting model. The model is based on a yearly dataset and its subset seasonal partitions. The dataset is first preprocessed to remove inconsistencies and outliers. The performance measures of mean absolute error (MAE), mean square error (MSE) and root mean square error (RMSE) are used to evaluate the accuracy of the model. The results show that the performance of the model can be enhanced with hyperparameter tuning. This is shown with an observed improvement of about 44% in accuracy after tuning the hyperparameters of the decision tree regressor. The results further show that the decision tree model can be more suitable for utilisation in forecasting the partitioned dataset.
- University of South Africa South Africa
- University of South Africa South Africa
energy forecasting, Technology, decision tree regression, energy planning, hyperparameter tuning, T, intermittent energy sources
energy forecasting, Technology, decision tree regression, energy planning, hyperparameter tuning, T, intermittent energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
