Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ENEA Open Archivearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Composition and Injection Angle Effects on Combustion of an NH3/H2/N2 Jet in an Air Crossflow

Authors: Donato Cecere; Matteo Cimini; Simone Carpenella; Jan Caldarelli; Eugenio Giacomazzi;

Composition and Injection Angle Effects on Combustion of an NH3/H2/N2 Jet in an Air Crossflow

Abstract

This study explores the combined effects of fuel composition and injection angle on the combustion behavior of an NH3/H2/N2 jet in an air crossflow by means of high-fidelity Large Eddy Simulations (LESs). Four distinct fuel mixtures derived from ammonia partial decomposition, with hydrogen concentrations ranging from 15% to 60% by volume, are injected at angles of 90° and 75° relative to the crossflow, and at operating conditions frequently encountered in micro-gas turbines. The influence of strain on peak flame temperature and NO formation in non-premixed, counter-flow laminar flames is first examined. Then, the instantaneous flow features of each configuration are analyzed focusing on key turbulent structures, and time-averaged spatial distributions of temperature and NO in the reacting region are provided. In addition, statistical analysis on the formation pathways of NO and H2 is performed, revealing unexpected trends: in particular, the lowest hydrogen content flame yields higher temperatures and NO production due to the enhancement of the ammonia-to-hydrogen conversion chemical mechanism, thus promoting flame stability. As the hydrogen concentration increases, this conversion decreases, leading to lower NO emissions and unburned fuel, particularly at the 75° injection angle. Flames with a 90° injection angle exhibit a more pronounced high-temperature recirculation zone, further driving NO production compared with the 75° cases. These findings provide valuable insights into optimizing ammonia–hydrogen fuel blends for high-efficiency, low-emission combustion in gas turbines and other applications, highlighting the need for a careful balance between fuel composition and injection angle.

Country
Italy
Keywords

Technology, hydrogen, LES, T, jet in crossflow, ammonia, combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research