Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biosurfactants: Chemical Properties, Ecofriendly Environmental Applications, and Uses in the Industrial Energy Sector

Authors: Yslla Emanuelly da Silva Faccioli; Kaio Wêdann de Oliveira; Jenyffer Medeiros Campos-Guerra; Attilio Converti; Rita de Cássia F. Soares da Silva; Leonie A. Sarubbo;

Biosurfactants: Chemical Properties, Ecofriendly Environmental Applications, and Uses in the Industrial Energy Sector

Abstract

The exploitation of nature and the increase in manufacturing production are the cause of major environmental concerns, and considerable efforts are needed to resolve such issues. Oil and petroleum derivatives constitute the primary energy sources used in industries. However, the transportation and use of these products have huge environmental impacts. A significant issue with oil-related pollution is that hydrocarbons are highly toxic and have low biodegradability, posing a risk to ecosystems and biodiversity. Thus, there has been growing interest in the use of renewable compounds from natural sources. Biosurfactants are amphipathic microbial biomolecules emerging as sustainable alternatives with beneficial characteristics, including biodegradability and low toxicity. Biosurfactants and biosurfactant-producing microorganisms serve as an ecologically correct bioremediation strategy for ecosystems polluted by hydrocarbons. Moreover, synthetic surfactants can constitute additional recalcitrant contaminants introduced into the environment, leading to undesirable outcomes. The replacement of synthetic surfactants with biosurfactants can help solve such problems. Thus, there has been growing interest in the use of biosurfactants in a broad gamut of industrial sectors. The purpose of this review was to furnish a comprehensive view of biosurfactants, classifications, properties, and applications in the environmental and energy fields. In particular, practical applications of biosurfactants in environmental remediation are discussed, with special focus on bioremediation, removal of heavy metals, phytoremediation, microbial enhanced oil recovery, metal corrosion inhibition, and improvements in agriculture. The review also describes innovating decontamination methods, including nanobioremediation, use of genetically modified microorganisms, enzymatic bioremediation, modeling and prototyping, biotechnology, and process engineering. Research patents and market prospects are also discussed to illustrate trends in environmental and industrial applications of biosurfactants.

Country
Italy
Keywords

Technology, environmental contamination, biosurfactant, environmental contamination, remediation, industrial applications, environmental biotechnology, T, remediation, environmental biotechnology, biosurfactant, industrial applications

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research