
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Sustainable Configuration Optimisation of Office Multi-Angled Façade Systems

doi: 10.3390/en17215295
This research paper optimises the configuration of multi-angled façade systems to achieve the sustainability goals of reduced energy consumption and improved indoor climate quality. The concept of a multi-angled façade system is based on proposing the use of two different orientations of windows in each façade on a vertical axis, but not tilted up and down. The large part of the multi-angled façade is oriented more to the north to optimise the use of daylight and the small part more to the south to optimise the use of solar radiation. In order to evaluate the performance of the façade, the software program IDA ICE version 4.8 is used. (EQUA, Stockholm, Sweden). Two groups of scenarios were simulated: the first group consisted of nine scenarios (A1 to A9) that included changing the area and the orientation of the two façade parts, and the second group consisted of three scenarios (B1 to B3) by changing the window to wall ratio (WWR) of these scenarios. According to the results of the simulation, two scenarios from the first group are recommended: A3 for optimal daylight penetration and A7 for optimal energy performance. Regarding the second group, scenarios B1 for optimal daylight penetration and B3 for optimal energy performance are recommended.
- Middlesex University United Kingdom
Technology, daylight availability, T, sustainable buildings, high-performance façades configuration, solar shading control strategies
Technology, daylight availability, T, sustainable buildings, high-performance façades configuration, solar shading control strategies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
