
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Control Structures for Combined H2/Electricity from Offshore Wind Turbines

doi: 10.3390/en17215353
Wind energy proves to be a highly favourable choice for electricity generation due to its clean and renewable nature, and is playing a significant role in reducing global greenhouse gas emissions. Offshore wind turbine systems have gained widespread popularity as they can capitalise on elevated and consistent wind speeds surpassing those found in onshore locations, resulting in increased energy efficiency. Furthermore, offshore wind power possesses the potential to emerge as a significant electricity source for the production of green hydrogen. As water electrolysis technology for hydrogen production continues to advance, utilizing offshore wind power for hydrogen generation is becoming more economically viable and practical. Offshore wind power with higher wind speeds in combination with efficient control structures presents an attractive option for electricity generation and hydrogen co-production. This paper aims to present and evaluate four different production structures for combined H2/energy generation from offshore wind turbines. Previous research studies in this area often overlook control structures and lack information on power converter operations. In contrast, this article studies control structures that enable proper functionality and ensure adequate interoperability, enhancing the reliability of renewable energy integration. Each structure, including both wind turbines and electrolyser, is described in detail, along with the corresponding controllers. Simulation results are presented for each structure and controller to demonstrate their effective operation.
- Morelia Institute of Technology Mexico
- University of Strathclyde United Kingdom
- Morelia Institute of Technology Mexico
Technology, offshore, Production of electric energy or power, onshore, wind turbines, T, 621, DFIG, green hydrogen, 620
Technology, offshore, Production of electric energy or power, onshore, wind turbines, T, 621, DFIG, green hydrogen, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
