Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review

Authors: Katarzyna Bułkowska; Magdalena Zielińska;

Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review

Abstract

The anaerobic digestion (AD) of livestock blood represents a sustainable solution for the management of waste generated by the meat processing industry while simultaneously generating renewable energy. The improper treatment of livestock blood, which is rich in organic matter and nutrients, can result in environmental risks such as water pollution, soil degradation, and greenhouse gas emissions. This review examines a range of AD strategies, with a particular focus on technological advances in reactor design, pretreatment, and co-digestion, with the aim of optimizing process efficiency. While the high protein content of blood has the potential to enhance biogas production, challenges such as ammonia inhibition and process instability must be addressed. Innovations such as bio-carriers, thermal pretreatment, and co-digestion with carbon-rich substrates have demonstrated efficacy in addressing these challenges, resulting in stable operation and enhanced methane yields. The advancement of AD technologies is intended to mitigate the environmental impact of livestock blood waste and facilitate the development of a circular bioeconomy. Furthermore, the possibility of utilizing slaughterhouse blood for the recovery of valuable products, including proteins, heme iron, and bioactive peptides, was evaluated with a view to their potential applications in the pharmaceutical and food industries. Furthermore, the potential of utilizing protein-rich blood as a substrate for mixed culture fermentation in volatile fatty acid (VFA) biorefineries was explored, illustrating its viability in biotechnological applications.

Keywords

Technology, T, protein-rich substrate, waste management, livestock blood waste, ammonia inhibition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold