Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Capacity Energy Storage Devices Designed for Use in Railway Applications

Authors: Krystian Woźniak; Beata Kurc; Łukasz Rymaniak; Natalia Szymlet; Piotr Pielecha; Jakub Sobczak;

High-Capacity Energy Storage Devices Designed for Use in Railway Applications

Abstract

This paper investigates the application of high-capacity supercapacitors in railway systems, with a particular focus on their role in energy recovery during braking processes. The study highlights the potential for significant energy savings by capturing and storing energy generated through electrodynamic braking. Experimental measurements conducted on a diesel–electric multiple unit revealed that approximately 28.3% to 30.5% of the energy could be recovered from the traction network, regardless of the type of drive used—whether electric or diesel. This research also explores the integration of starch-based carbon as an electrode material in supercapacitors, offering an innovative, sustainable alternative to traditional graphite or graphene electrodes. The carbon material was obtained through a simple carbonization process, with experimental results demonstrating a material capacity of approximately 130 F/g. To quantify the energy recovery, calculations were made regarding the mass and power requirements of the supercapacitors. For the tested vehicle, it was estimated that around 28.7% of the energy could be recovered during the braking process. To store 15 kWh of energy, the total mass of the capacitors required is approximately 245.1 kg. The study emphasizes the importance of increasing voltage levels in railway systems, which can enhance energy transmission and utilization efficiency. Additionally, the paper discusses the necessity of controlled energy discharge, allowing for the flexible management of energy release to meet the varying power demands of trains. By integrating high-voltage supercapacitors and advanced materials like starch-based carbon, this research paves the way for more sustainable and efficient railway systems, contributing to the industry’s goals of reducing emissions and improving operational performance. The findings underscore the crucial role of these capacitors in modernizing railway infrastructure and promoting environmentally responsible transportation solutions.

Keywords

Technology, starch, T, recovery braking, supercapacitor, rail vehicle, energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research