Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating Greenhouse Gas Emissions from Hydrogen-Blended Natural Gas Networks

Authors: Paglini, Roberto; Minuto, Francesco Demetrio; Lanzini, Andrea;

Estimating Greenhouse Gas Emissions from Hydrogen-Blended Natural Gas Networks

Abstract

Methane is a significant contributor to anthropogenic greenhouse gas emissions. Blending hydrogen with natural gas in existing networks presents a promising strategy to reduce these emissions and support the transition to a carbon-neutral energy system. However, hydrogen’s potential for atmospheric release raises safety and environmental concerns, necessitating an assessment of its impact on methane emissions and leakage behavior. This study introduces a methodology for estimating how fugitive emissions change when a natural gas network is shifted to a 10% hydrogen blend by combining analytical flowrate models with data from sampled leaks across a natural gas network. The methodology involves developing conversion factors based on existing methane emission rates to predict corresponding hydrogen emissions across different sections of the network, including mainlines, service lines, and facilities. Our findings reveal that while the overall volumetric emission rates increase by 5.67% on the mainlines and 3.04% on the service lines, primarily due to hydrogen’s lower density, methane emissions decrease by 5.95% on the mainlines and 8.28% on the service lines. However, when considering the impact of a 10% hydrogen blend on the Global Warming Potential, the net reduction in greenhouse gas emissions is 5.37% for the mainlines and 7.72% for the service lines. This work bridges the gap between research on hydrogen leakage and network readiness, which traditionally focuses on safety, and environmental sustainability studies on methane emission.

Country
Italy
Related Organizations
Keywords

hydrogen emissions, Technology, hydrogen–methane blending, greenhouse gas emissions, T, natural gas pipeline, hydrogen blends, gaseous fuel leakage, hydrogen emissions; hydrogen blends; hydrogen–methane blending; gaseous fuel leak age; natural gas pipeline; greenhouse gas emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold