
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application

doi: 10.3390/en17246468
A novel self-heating technique is proposed to clear snow from photovoltaic panels as a solution to the issue of winter snow accumulation in photovoltaic (PV) power plants. This approach aims to address the shortcomings of existing methods. It reduces PV cell wear, resource loss, and safety risks, without the need for additional devices. A self-heating current is applied to the solar panel to melt the snow covering its surface, which is then allowed to slide off the panel due to gravity. The proposed system consists of a bidirectional DC-DC converter, which removes the snow cover by heating the solar PV modules using electricity from the grid or electric vehicle (EV) batteries. It also charges the EV battery pack and/or supplies the DC bus when no EV is plugged into the charging station. For each mode of operation, a current-controlled system was implemented using a PI controller and a model predictive controller (MPC). The MPC approach achieved a faster rise time, shorter settling time, very low current ripples, and high stability for the proposed system. Specifically, the settling time decreased from 9 ms and 155 ms when using the PI controller at 20 µs and 35 µs with the MPC controller for both the buck and boost modes, respectively.
- Delft University of Technology Netherlands
- British University in Egypt Egypt
Technology, PV cells, T, bidirectional converter, boost converter, buck converter, electric vehicles
Technology, PV cells, T, bidirectional converter, boost converter, buck converter, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
