
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Advanced Rectifier Technologies for Electrolysis-Based Hydrogen Production: A Comparative Study and Real-World Applications

doi: 10.3390/en18010048
In response to the growing significance of hydrogen as a clean energy carrier, this study investigates the advanced rectifier technologies employed in electrolytic hydrogen production. First, the topologies of three rectifiers typically employed in industry—24-pulse thyristor rectifiers, insulated gate bipolar transistor (IGBT) rectifiers, and 24-pulse diode rectifiers with multi-phase choppers—are described in detail. Subsequently, at a constant 5 MW power level, the three rectifiers are compared in terms of rectifier efficiency, grid-side power quality, power factor, and overall investment cost. The results indicate that in comparison to the other two rectifiers, the thyristor rectifier provides superior efficiency and cost advantages, thereby maintaining a dominant market share. Additionally, case studies of rectifier power supplies from three real-world industrial projects are presented, along with actual grid-side power quality data. Finally, the challenges, potential applications, and future prospects of rectifiers in renewable energy-based hydrogen production are discussed and summarized.
- Sichuan University China (People's Republic of)
- Sichuan University China (People's Republic of)
Technology, power supply, T, thyristor rectifier, water electrolysis
Technology, power supply, T, thyristor rectifier, water electrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
