
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Methodology for the Automatic Generation of Optimization Models of Systems of Flexible Energy Resources

The integration of increasing shares of intermittent renewable energy necessitates flexibility in both energy generation and consumption. Typically, the operation of flexible energy resources is orchestrated through optimization models. However, the manual creation of these models is a complex and error-prone task, often requiring the expertise of domain specialists. This work introduces a methodology for the automatic generation of optimization models for systems of flexible energy resources to simplify the modeling process and increase the use of energy flexibility. This methodology utilizes a modular, generic model structure designed to depict systems of flexible energy resources. It incorporates algorithms for model parameter derivation from operational data and an information model that represents the system’s structure and dependencies of resources. The efficacy of this methodology is demonstrated in two case studies, highlighting its relevance and ability to significantly streamline the optimization modeling process by minimizing the need for manual intervention.
ddc:500, Technology, T, automatic model generation, optimization model, 500, energy flexibility
ddc:500, Technology, T, automatic model generation, optimization model, 500, energy flexibility
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
