Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Offshore Network Development to Foster the Energy Transition

Authors: Enrico Maria Carlini; Corrado Gadaleta; Michela Migliori; Francesca Longobardi; Gianfranco Luongo; Stefano Lauria; Marco Maccioni; +1 Authors

Offshore Network Development to Foster the Energy Transition

Abstract

A growing interest in offshore wind energy in the Mediterranean Sea has been recently observed thanks to the potential for scale-up and recent advances in floating technologies and dynamic cables: in the Italian panorama, the offshore wind connection requests to the National Transmission Grid (NTG) reached almost 84 GW at the end of September 2024. Starting from a realistic estimate of the offshore wind power plants (OWPPs) to be realized off the southern coasts in a very long-term scenario, this paper presents a novel optimization procedure for meshed AC offshore network configuration, aiming at minimizing the offshore wind generation curtailment based on the DC optimal power flow approximation, assessing the security condition of the whole onshore and offshore networks. The reactive power compensation aspects are also considered in the optimization procedure: the optimal compensation sizing for export cables and collecting stations is evaluated via the AC optimal power flow (OPF) approach, considering a combined voltage profile and minimum short circuit power constraint for the onshore extra-high voltage (EHV) nodes. The simulation results demonstrate that the obtained meshed network configuration and attendant re-active compensation allow most of the offshore wind generation to be evacuated even in the worst-case scenario, i.e., the N1 network, full offshore wind generation output, and summer line rating, testifying to the relevance of the proposed methodology for real applications.

Related Organizations
Keywords

Technology, power system planning, reactive power compensation, T, optimization model, offshore wind generation, offshore transmission networks, PTDF matrix

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research