
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comprehensive Review of Bearing Currents in Electrical Machines: Mechanisms, Impacts, and Mitigation Techniques

doi: 10.3390/en18030517
The present paper deals with a review on bearing currents in electrical machines, with major emphasis on mechanisms, impacts, and mitigation strategies. High-frequency common-mode voltages from the inverter-driven system have been found to be the main reason for bearing current leading to motor bearing degradation and eventual failure. This paper deals with bearing currents—electrical discharge machining (EDM) currents, circulating bearing currents, and rotor-to-ground bearing currents—and the various methods of their generation and effects that are harmful to the bearings and lubricants of a motor. Mitigation techniques, among which the following have been taken into account, are studied in this context: the optimization of PWM modulation, and the use of shaft grounding brushes, insulated bearings, and passive or active filters. Finally, advantages, limitations, and implementation challenges are discussed. A review comparing three-phase and dual three-phase inverters showed that, due to the increased degree of freedom in modulation strategies, it is possible to eliminate common-mode voltages through active modulation techniques. Such added flexibility will reduce the risk of bearing currents effectively. It also highlights future research directions in bearing current suppression, including the development of multi-phase motor systems, real-time monitoring technologies with artificial intelligence, and the use of new insulation materials for the enhancement of bearing reliability. The results obtained should guide future research and engineering practices in suppressing bearing currents to improve motor durability with high performance.
- Fuzhou University China (People's Republic of)
- Southeast University China (People's Republic of)
- Fuzhou University China (People's Republic of)
- Southeast University China (People's Republic of)
- Nottingham Trent University United Kingdom
Technology, multi-phase motor systems, pulse width modulation, common-mode voltage, T, shaft voltage, bearing current
Technology, multi-phase motor systems, pulse width modulation, common-mode voltage, T, shaft voltage, bearing current
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
