
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved Multi-Objective Strategy Diversity Chaotic Particle Swarm Optimization of Ordered Charging Strategy for Electric Vehicles Considering User Behavior

doi: 10.3390/en18030690
With the development of the EV industry, the number of EVs is increasing, and the random charging and discharging causes a great burden on the power grid. Meanwhile, the increasing electricity bills reduce user satisfaction. This article proposes an algorithm that considers user satisfaction to solve the charging and discharging scheduling problem of EVs. This article adds an objective function to quantify user satisfaction and addresses the issues of premature local optima and insufficient diversity in the MOPSO algorithm. Based on the performance of different particles, the algorithm assigns elite particle, general particle, and learning particle roles to the particles and assigns strategies for maintaining search, developing search, and learning search, respectively. In order to avoid falling into local optima, chaotic sequence perturbations are added during each iteration process avoiding premature falling into local optima. Finally, case studies are implemented and the comparison analysis is performed in terms of the use and benefit of each design feature of the algorithm. The results show that the proposed algorithm is capable of achieving up to 23% microgrid load reduction and up to 20% improvement in convergence speed compared to other algorithms. It is superior to other algorithms in solving the problem of orderly charging and discharging of electric vehicles and has strong usability and feasibility.
- Taylor's University Malaysia
- National University of Defense Technology China (People's Republic of)
- National University of Defense Technology China (People's Republic of)
- Taylor's University Malaysia
- Northeastern University China (People's Republic of)
tent chaotic sequence perturbation, Technology, multi-objective optimization, T, particle swarm optimization algorithm, orderly charging and discharging, electric vehicles
tent chaotic sequence perturbation, Technology, multi-objective optimization, T, particle swarm optimization algorithm, orderly charging and discharging, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
