Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable Geothermal Energy: A Review of Challenges and Opportunities in Deep Wells and Shallow Heat Pumps for Transitioning Professionals

Authors: Tawfik Elshehabi; Mohammad Alfehaid;

Sustainable Geothermal Energy: A Review of Challenges and Opportunities in Deep Wells and Shallow Heat Pumps for Transitioning Professionals

Abstract

Geothermal energy has emerged as a cornerstone in renewable energy, delivering reliable, low-emission baseload electricity and heating solutions. This review bridges the current knowledge gap by addressing challenges and opportunities for engineers and scientists, especially those transitioning from other professions. It examines deep and shallow geothermal systems and explores the advanced technologies and skills required across various climates and environments. Transferable expertise in drilling, completion, subsurface evaluation, and hydrological assessment is required for geothermal development but must be adapted to meet the demands of high-temperature, high-pressure environments; abrasive rocks; and complex downhole conditions. Emerging technologies like Enhanced Geothermal Systems (EGSs) and closed-loop systems enable sustainable energy extraction from impermeable and dry formations. Shallow systems utilize near-surface thermal gradients, hydrology, and soil conditions for efficient heat pump operations. Sustainable practices, including reinjection, machine learning-driven fracture modeling, and the use of corrosion-resistant alloys, enhance well integrity and long-term performance. Case studies like Utah FORGE and the Geysers in California, US, demonstrate hydraulic stimulation, machine learning, and reservoir management, while Cornell University has advanced integrated hybrid geothermal systems. Government incentives, such as tax credits under the Inflation Reduction Act, and academic initiatives, such as adopting geothermal energy at Cornell and Colorado Mesa Universities, are accelerating geothermal integration. These advancements, combined with transferable expertise, position geothermal energy as a major contributor to the global transition to renewable energy.

Related Organizations
Keywords

geothermal drilling, Technology, shallow geothermal systems, closed-loop systems, T, heat pumps, enhanced geothermal systems (EGSs), sustainable well design

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities