
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Release in Deuterium–Constantan Interactions

doi: 10.3390/en18040856
A significant energy release over a short time is achieved in replicable experiments involving the interaction of deuterium gas with constantan specimens. The experiments were carried out in a gas chamber where the injected deuterium interacted with heated specimens: (i) Many replicable experiments were performed at initial temperatures in the range of 666–681 °C. The temperatures of the specimens began to increase ~8 s after the beginning of deuterium injection as additional increases of 358–382 °C reached after ~30 s. The released excess power was in the range of 183–209 W, its density ranged from ~114–130 W/g, and the ratio of (output power)/(input power) was ≈ 3.76–3.91. (ii) Several replicable experiments were performed at initial temperatures of 950 °C. In all these experiments, explosive evaporation of the wires occurred immediately after the beginning of deuterium injection. The released excess momentary power was greater than 3400 W, its density was 2280 W/g, and the ratio of (output power)/(input power) was ≈ 16 and greater. The outcomes found were as follows: (a) the released excess power was not of electrical origin; (b) the released excess power of chemical origin was less than ~0.18% of the total released excess power; (c) the significant density of the released excess power; and (d) helium release, correlating with the energy release, was observed. The conclusion that the released energy is of nuclear origin was drawn.
- Lakehead University Canada
- Lakehead University Canada
energy release, Technology, constantan, LENR, T, helium, deuterium
energy release, Technology, constantan, LENR, T, helium, deuterium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
