Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Approach to Multiclass Industrial Heat Source Detection Using Optical Remote Sensing Images

Authors: Yi Zeng; Ruilin Liao; Caihong Ma; Dacheng Wang; Yongze Lv;

An Approach to Multiclass Industrial Heat Source Detection Using Optical Remote Sensing Images

Abstract

Industrial heat sources (IHSs) are major contributors to energy consumption and environmental pollution, making their accurate detection crucial for supporting industrial restructuring and emission reduction strategies. However, existing models either focus on single-class detection under complex backgrounds or handle multiclass tasks for simple targets, leaving a gap in effective multiclass detection for complex scenarios. To address this, we propose a novel multiclass IHS detection model based on the YOLOv8-FC framework, underpinned by the multiclass IHS training dataset constructed from optical remote sensing images and point-of-interest (POI) data firstly. This dataset incorporates five categories: cement plants, coke plants, coal mining areas, oil and gas refineries, and steel plants. The proposed YOLOv8-FC model integrates the FasterNet backbone and a Coordinate Attention (CA) module, significantly enhancing feature extraction, detection precision, and operational speed. Experimental results demonstrate the model’s robust performance, achieving a precision rate of 92.3% and a recall rate of 95.6% in detecting IHS objects across diverse backgrounds. When applied in the Beijing–Tianjin–Hebei (BTH) region, YOLOv8-FC successfully identified 429 IHS objects, with detailed category-specific results providing valuable insights into industrial distribution. It shows that our proposed multiclass IHS detection model with the novel YOLOv8-FC approach could effectively and simultaneously detect IHS categories under complex backgrounds. The IHS datasets derived from the BTH region can support regional industrial restructuring and optimization schemes.

Related Organizations
Keywords

Technology, industrial heat source, T, deep learning, remote sensing image, YOLOv8-FC, multiclass object detection

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research