
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Approach to Multiclass Industrial Heat Source Detection Using Optical Remote Sensing Images

doi: 10.3390/en18040865
Industrial heat sources (IHSs) are major contributors to energy consumption and environmental pollution, making their accurate detection crucial for supporting industrial restructuring and emission reduction strategies. However, existing models either focus on single-class detection under complex backgrounds or handle multiclass tasks for simple targets, leaving a gap in effective multiclass detection for complex scenarios. To address this, we propose a novel multiclass IHS detection model based on the YOLOv8-FC framework, underpinned by the multiclass IHS training dataset constructed from optical remote sensing images and point-of-interest (POI) data firstly. This dataset incorporates five categories: cement plants, coke plants, coal mining areas, oil and gas refineries, and steel plants. The proposed YOLOv8-FC model integrates the FasterNet backbone and a Coordinate Attention (CA) module, significantly enhancing feature extraction, detection precision, and operational speed. Experimental results demonstrate the model’s robust performance, achieving a precision rate of 92.3% and a recall rate of 95.6% in detecting IHS objects across diverse backgrounds. When applied in the Beijing–Tianjin–Hebei (BTH) region, YOLOv8-FC successfully identified 429 IHS objects, with detailed category-specific results providing valuable insights into industrial distribution. It shows that our proposed multiclass IHS detection model with the novel YOLOv8-FC approach could effectively and simultaneously detect IHS categories under complex backgrounds. The IHS datasets derived from the BTH region can support regional industrial restructuring and optimization schemes.
- Chinese Academy of Sciences China (People's Republic of)
- Beijing Forestry University China (People's Republic of)
- Beijing Forestry University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Aerospace Information Research Institute China (People's Republic of)
Technology, industrial heat source, T, deep learning, remote sensing image, YOLOv8-FC, multiclass object detection
Technology, industrial heat source, T, deep learning, remote sensing image, YOLOv8-FC, multiclass object detection
