Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Integrated Biorefinery for the Valorization of Residual Cardoon Biomass: Overview of Technologies and Process Simulation

Authors: Vittoria Fatta; Aristide Giuliano; Maria Teresa Petrone; Francesco Nanna; Antonio Villone; Donatella Barisano; Roberto Albergo; +3 Authors

A Novel Integrated Biorefinery for the Valorization of Residual Cardoon Biomass: Overview of Technologies and Process Simulation

Abstract

Lignocellulosic biomass is currently widely used in many biorefining processes. The full exploitation of biomass from uncultivated or even marginal lands for the production of biobased chemicals has deserved huge attention in the last few years. Among the sustainable biomass-based value chains, cardoon crops could be a feedstock for biorefineries as they can grow on marginal lands and be used as raw material for multipurpose exploitation, including seeds, roots, and epigeous lignocellulosic solid residue. This work focused on the technical analysis of a novel integrated flowsheet for the exploitation of the lignocellulosic fraction through the assessment of thermochemical, biochemical, and extractive technologies and processes. In particular, high-yield thermochemical processes (gasification), innovative biotechnological processes (syngas fermentation to ethanol), and extractive/catalyzed processes for the valorization of cardoon roots to FDCA and residual solid biomass were modeled and simulated. Inulin conversion to 2,5-Furandicarboxylic acid was the main conversion route taken into consideration. Finally, the novel process flowsheet, treating 130,000 t/y of residual biomass and integrating all proposed technologies, was modeled and assessed using process simulation tools to achieve overall mass and energy balances for comparison with alternative options. The results indicated that cardoon biorefining through the proposed flowsheet can produce, per 1000 tons of input dry biomass, 211 kg of 2,5-Furandicarboxylic acid and 140 kg of ethanol through biomass gasification followed by syngas fermentation. Furthermore, a pre-feasibility analysis was conducted, revealing significant and potentially disruptive results in terms of environmental impact (with 40 ktCO2eq saved) and economic feasibility (with an annual gross profit of EUR 30 M/y).

Country
Italy
Related Organizations
Keywords

bioprocesses modeling; economic feasibility; environmental; ethanol; FDCA; inulin; lignocellulosic material; mass and energy balances; technical performances, Technology, technical performances, economic feasibility, T, lignocellulosic material, mass and energy balances, bioprocesses modeling, environmental

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research