
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stability Analysis and Mitigation of Thermo-Hydraulic Oscillations in Multi-Supplier District Heating Systems

In fourth-generation district heating systems (DHSs), the supply temperature of modern heat sources such as heat pumps and waste heat can potentially be reduced by mixing in hot water from combustion-based producers, thereby increasing efficiency and facilitating integration into networks with unrenovated buildings. However, this approach introduces the risk of thermo-hydraulic oscillations driven by mixing dynamics, transport delays, and mass flow adjustments by consumers. These oscillations can increase wear and cost and may potentially lead to system failure. This study addresses the asymptotic stability of multi-supplier DHSs by combining theoretical analysis and practical validation. Through linearization and Laplace transformation, we derive the transfer function of a system with two suppliers. Using pole-zero analysis, we show that transport delay can cause instability. We identify a new control law, demonstrating that persisting oscillations depend on network temperatures and low thermal inertia and enabling stabilization through careful temperature selection, thorough choice of the slack supplier, or installation of buffer tanks. We validate our findings using dynamic simulations of a nonlinear delayed system in Modelica, highlighting the applicability of such systems to real-world DHSs. These results provide actionable insights for designing robust DHSs and mitigating challenges in multi-supplier configurations by relying on thoughtful system design rather than complex control strategies.
- Siemens (Germany) Germany
- TU Darmstadt Germany
- Siemens (Germany) Germany
multi-supplier systems, Technology, T, thermo-hydraulic oscillations, stability analysis, control, district heating
multi-supplier systems, Technology, T, thermo-hydraulic oscillations, stability analysis, control, district heating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
