
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Hydrogen Leak Detection Method for PEM Fuel Cells Using Active Thermography

doi: 10.3390/en18051185
Hydrogen leakage in Proton Exchange Membrane (PEM) fuel cells poses critical safety, efficiency, and operational reliability risks. This study introduces an innovative infrared (IR) thermography-based methodology for detecting and quantifying hydrogen leaks towards the outside of PEM fuel cells. The proposed method leverages the catalytic properties of a membrane electrode assembly (MEA) as an active thermal tracer, facilitating real-time visualisation and assessment of hydrogen leaks. Experimental tests were conducted on a single-cell PEM fuel cell equipped with intact and defective gaskets to evaluate the method’s effectiveness. Results indicate that the active tracer generates distinct thermal signatures proportional to the leakage rate, overcoming the limitations of hydrogen’s low IR emissivity. Comparative analysis with passive tracers and baseline configurations highlights the active tracer-based approach’s superior positional accuracy and sensitivity. Additionally, the method aligns detected thermal anomalies with defect locations, validated through pressure distribution maps. This novel, non-invasive technique offers precise, reliable, and scalable solutions for hydrogen leak detection, making it suitable for dynamic operational environments and industrial applications. The findings significantly advance hydrogen’s safety diagnostics, supporting the broader adoption of hydrogen-based energy systems.
Technology, hydrogen, T, leakage, fuel cells, PEFC, IR thermography
Technology, hydrogen, T, leakage, fuel cells, PEFC, IR thermography
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
