Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks

Authors: Zurisaddai Severiche-Maury; Carlos Eduardo Uc-Rios; Wilson Arrubla-Hoyos; Dora Cama-Pinto; Juan Antonio Holgado-Terriza; Miguel Damas-Hermoso; Alejandro Cama-Pinto;

Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks

Abstract

In the quest to improve energy efficiency in residential environments, home energy management systems (HEMSs) have emerged as an effective solution, leveraging artificial intelligence (AI) technologies to improve energy efficiency. This study proposes a deep learning-based approach employing Long Short-Term Memory (LSTM) neural networks to predict household energy usage based on power consumption data from common appliances, such as lamps, fans, air conditioners, televisions, and computers. The model comprises two interrelated submodels: one predicts the individual energy consumption and usage time of each device, while the other estimates the total energy consumption of connected appliances. This dual structure enhances accuracy by capturing both device-specific consumption patterns and overall household energy use, facilitating informed decision-making at multiple levels. Following a systematic methodology that includes model building, training, and evaluation, the LSTM model achieved a low test set loss and mean squared error (MSE), with values of 0.0163 for individual consumption and usage time and 0.0237 for total consumption. Additionally, the predictive performance was strong, with MSE values of 1.0464 × 10−6 for usage time, 0.0163 for individual consumption, and 0.0168 for total consumption. The analysis of scatter plots and residuals revealed a high degree of correspondence between predicted and actual values, validating the model’s accuracy and reliability in energy forecasting. This study represents a significant advancement in intelligent home energy management, contributing to improved efficiency and promoting sustainable consumption practices.

Country
Spain
Keywords

Energy consumption prediction, Technology, energy consumption prediction, networks, smart home energy efficiency, T, deep learning, Deep learning, Networks, LSTM, HEMS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research