Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Flow Characteristics in Rotating Distributary and Confluence Cavities

Authors: Kuan Zheng; Huan Ma; Hongchuang Sun; Jiang Qin;

Investigation of Flow Characteristics in Rotating Distributary and Confluence Cavities

Abstract

Power generation is an important part of air vehicle energy management when developing long-endurance and reusable hypersonic aircraft. In order to utilize an air turbine power generation system on board, fuel-based rotating cooling has been researched to cool the turbine’s rotor blades. For fuel-cooling air turbines, each blade corresponds to a separate cooling channel. All the separate cooling channels cross together and form a distributary cavity and a confluence cavity in the center of the disk. In order to determine the flow characteristics in the distributary and confluence cavities, computational fluid dynamics (CFD) simulations using the shear–stress–transport turbulence model were carried out under the conditions of different rotating speeds and different mass flow rates. The results showed great differences between non-rotating flow and rotating flow conditions in the distributary and confluence cavities. The flow in the distributary and confluence cavities has rotational velocity, with obvious layering distribution regularity. Moreover, a high-speed rotational flow surface is formed in the confluence cavity of the original structure, due to the combined functions of centrifugal force, inertia, and the Coriolis force. Great pressure loss occurs when fluid passes through the high-speed rotational flow surface. This pressure loss increases with the increase in rotating speed and mass flow rate. Finally, four structures were compared, and an optimal structure with a separated outlet channel was identified as the best structure to eliminate this great pressure loss.

Related Organizations
Keywords

Technology, great pressure loss, T, rotating flow, distributary cavity, confluence cavity, hydrocarbon fuel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research