
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains

doi: 10.3390/en18051298
Iron-based oxygen carriers (OCs) have received much attention due to their low costs, high mechanical strengths and high-temperature stabilities in the chemical looping gasification (CLG) of biomass, but their chemical reactivity is very ordinary. Converter steel slags (CSSs) are steelmaking wastes and rich in Fe2O3, CaO and MgO, which have good oxidative ability and good stability as well as catalytic effects on biomass gasification. Therefore, the composite OCs prepared by mechanically mixing CSSs with iron-based OCs are expected to be used to increase the hydrogen production in the CLG of biomass. In this study, the catalytic performance of CSS/Fe2O3 composite OCs prepared by mechanically mixing CSSs with iron-based OCs on the gasification of brewers’ spent grains (BSGs) were investigated in a tubular furnace experimental apparatus. The results showed that when the weight ratio of the CSSs in composite OCs was 0.5, the relative volume fraction of hydrogen reached the maximum value of 49.1%, the product gas yield was 0.85 Nm3/kg and the gasification efficiency was 64.05%. It could be found by X-ray diffraction patterns and scanning electron microscope characterizations that the addition of CSSs helped to form MgFe2O4, which are efficient catalysts for H2 production. Owing to the large and widely distributed surface pores of CSSs, mixing them with iron-based OCs was beneficial for catalytic steam reforming to produce hydrogen.
- Qingdao Binhai University China (People's Republic of)
- Shandong University of Science and Technology China (People's Republic of)
- Shandong University of Science and Technology China (People's Republic of)
- Qingdao University China (People's Republic of)
- Tsinghua University China (People's Republic of)
chemical looping gasification, catalytic performance, Technology, hydrogen production, brewers’ spent grains, T, converter steel slags, iron-based oxygen carriers
chemical looping gasification, catalytic performance, Technology, hydrogen production, brewers’ spent grains, T, converter steel slags, iron-based oxygen carriers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
