Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renovation of Typological Clusters with Building-Integrated Photovoltaic Systems

Authors: Irene Del Hierro López; Nuria Martín-Chivelet; Jesús Polo; Lorenzo Olivieri;

Renovation of Typological Clusters with Building-Integrated Photovoltaic Systems

Abstract

The current climate emergency makes it imperative to take action to halt the irreversible destruction of the planet, with the renovation of existing buildings playing a crucial role. In Europe, particularly in Spain, energy efficiency improvements in existing buildings are undertaken in only a small fraction of cases. This gap presents a valuable opportunity to implement measures that encourage such interventions. To enhance energy production and tackle this issue from a distributed energy perspective, building-integrated photovoltaic (BIPV) systems emerge as a key solution. In this context, the primary objective of this research is to enhance the visibility and promote the adoption of BIPV systems in building energy retrofitting through the development of a standardised action framework for their installation across distinct typological clusters. To achieve this objective, a comprehensive and systematic analysis was undertaken to construct a classification that most accurately and exhaustively represents the Spanish building stock. The analysis resulted in the identification of 15 typological clusters, which, based on shared formal attributes, were consolidated into 3 principal clusters. For each of these three primary groups, a tailored action guide for BIPV system implementation was developed, addressing their specific characteristics and highlighting the critical factors to be considered in each case. To illustrate the practical application of the proposed framework, a representative case study was selected and subjected to an in-depth analysis, resulting in a detailed proposal for BIPV system installations on both the façade and the roof. In this regard, this research develops an initial procedural framework that comprehensively represents diverse building typologies, providing a structured protocol for the integration of BIPV systems within the context of energy retrofit interventions.

Related Organizations
Keywords

photovoltaic, renovation, Technology, refurbishment, T, typological clusters, building-integrated photovoltaic (BIPV)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research