Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BULERIA
Article . 2025
License: CC BY
Data sources: BULERIA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges

Authors: Daniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;

The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges

Abstract

The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization.

Country
Spain
Keywords

Informática, Energy transition (ET), 3322.02 Generación de Energía, Technology, energy planning, Biblioteconomía, Energía, Smart energy systems, 5701.06 Documentación, T, energy transition (ET), Ingeniería de sistemas, artificial intelligence (AI), Artificial intelligence (AI), Energy planning, smart energy systems, artificial intelligence and energy transition (AI&ET), 1203.04 Inteligencia Artificial

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research