
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Solar Shading Performance of the Multi-Angled Façade System and Its Impact on the Sustainable Improvement of the Buildings

doi: 10.3390/en18071565
This research paper explores the visual potential of the multi-angled façade system, allowing office employees to achieve optimal exposure to the external environment through the room façade. This contributes to sustainability objectives by enhancing indoor climate quality, promoting health and well-being, and aligning with the UN Sustainable Development Goals 3, 9, and 11. This façade concept provides a solution to the issue of shading devices being fully closed for long periods due to intense solar radiation on the room’s window. The concept of a multi-angled window involves incorporating two differently oriented window sections within each façade along a vertical axis (right and left), rather than tilting them upward or downward. The larger section is oriented more toward the north to maximize daylight access and external views, while the smaller section faces south to enhance passive solar heating. The visual potential is assessed based on the periods when the solar shading devices are not fully closed—meaning one section of the multi-angled façade may remain open while the other is shaded. To evaluate this, along with the resulting energy consumption and indoor climate, the software program IDA ICE version 4.8 is utilized. Simulation results indicate that the duration of complete shading closure is significantly lower for a multi-angled façade compared to a flat façade, in some instances nearly half, thereby improving visual comfort, daylight availability, and heat gain while simultaneously reducing spatial energy consumption.
- Middlesex University United Kingdom
Technology, T, sustainable buildings, optimized façade design, strategies for solar shading control, view to the external environment
Technology, T, sustainable buildings, optimized façade design, strategies for solar shading control, view to the external environment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
