
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancing Frequency Event Detection in Power Systems Using Two Optimization Methods with Variable Weighted Metrics

doi: 10.3390/en18071659
This research presents a novel technique that refines the performance of a frequency event detection algorithm with four adjustable parameters based on signal processing and statistical methods. The algorithm parameters were optimized using two well-established optimization techniques: Grey Wolf Optimization and Particle Swarm Optimization. Unlike conventional approaches that apply equally weighted metrics within the objective function, this work implements variable weighted metrics that prioritize specificity, thereby strengthening detection accuracy by minimizing false-positive events. Realistic small- and large-scale frequency datasets were processed and analyzed, incorporating various events, quasi-events, and non-events obtained from a phasor measurement unit in the Western Interconnection. An analytical comparison with an algorithm that uses equally weighted metrics was performed to assess the proposed method’s effectiveness. The results demonstrate that the application of variable weighted metrics enables the detection algorithm to identify frequency non-events, thereby significantly reducing false positives reliably.
- Portland State University United States
- Portland State University United States
Technology, Particle Swarm Optimization, T, Grey Wolf Optimization, frequency event, frequency response, phasor measurement unit, frequency event detection
Technology, Particle Swarm Optimization, T, Grey Wolf Optimization, frequency event, frequency response, phasor measurement unit, frequency event detection
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
