Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics

Authors: Sifeddine Abdi; Noureddine Harid; Besseri Boubaker Achraf; Abderrahmane (Manu) Haddad; Ahmed Boubakeur;

Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics

Abstract

This paper reports the results of an experimental study that examines the impact of thermal aging on the electrical and chemical properties of insulating oil used in power transformers. Transformer-oil samples were thermally aged over a 5000 h period at different temperatures varying between 80 °C and 140 °C, replicating both normal and extreme operating conditions. Measurements of breakdown voltage, dielectric dissipation factor, acidity, and water content were taken at 500 h intervals. A novel approach of this research is the integration of these electrical and chemical characteristics into a comprehensive exponential regression analysis model. The results indicate that breakdown voltage and resistivity decrease with aging time, whereas the dielectric dissipation factor, acidity, and water content increase with aging time. The degradation trends computed by the proposed model show close correlation with both electrical and chemical properties, with correlation coefficients generally equal to or exceeding 90%, which demonstrates its reliability in predicting aging behavior of transformer oil. This integrated approach offers valuable insights into the combined electrical and chemical degradation processes due to thermal aging and assists in the condition assessment of power transformers.

Keywords

transformer oil, Technology, correlation, T, electrical properties, thermal aging, chemical properties, regression approach

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research