Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VTechWorks
Other literature type . 2025
License: CC BY
Data sources: VTechWorks
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VTechWorks
Other literature type . 2025
License: CC BY
Data sources: VTechWorks
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microgrid Reliability Incorporating Uncertainty in Weather and Equipment Failure

Authors: Sakthivelnathan Nallainathan; Ali Arefi; Christopher Lund; Ali Mehrizi-Sani;

Microgrid Reliability Incorporating Uncertainty in Weather and Equipment Failure

Abstract

Solar photovoltaic (PV) and wind power generation are key contributors to the integration of renewable energy into modern power systems. The intermittent and variable nature of these renewables has a substantial impact on the power system’s reliability. In time-series simulation studies, inaccuracies in solar irradiation and wind speed parameters can lead to unreliable evaluations of system reliability, ultimately resulting in flawed decision making regarding the investment and operation of energy systems. This paper investigates the reliability deviation due to modeling uncertainties in a 100% renewable-based system. This study employs two methods to assess and contrast the reliability of a standalone microgrid (SMG) system in order to achieve this goal: (i) random uncertainty within a selected confidence interval and (ii) splitting the cumulative distribution function (CDF) into five regions of equal probability. In this study, an SMG system is modeled, and loss of load probability (LOLP) is evaluated in both approaches. Six different sensitivity analysis studies, including annual load demand growth, are performed. The results from the simulations demonstrate that the suggested methods can estimate the reliability of a microgrid powered by renewable energy sources, as well as its probability of reaching certain levels of reliability.

Country
United States
Related Organizations
Keywords

Technology, T, standalone microgrid, cumulative distribution function, reliability evaluation, renewable energy, Monte Carlo simulation

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research