Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat Transfer Coefficient of a Building: A Constant with Limited Variability or Dynamically Variable?

Authors: Ljubomir Jankovic; Grant Henshaw; Christopher Tsang; Xinyi Zhang; Richard Fitton; William Swan;

Heat Transfer Coefficient of a Building: A Constant with Limited Variability or Dynamically Variable?

Abstract

The heat transfer coefficient, or the HTC, is an industry-standard indicator of building energy performance. It is predicated on an assumption that it is of a constant value, and several different methods have been developed to measure and calculate the HTC as a constant. Whilst there are limited variations in the results obtained from these different methods, none of these methods consider a possibility that the HTC could be dynamically variable. Our experimental work shows that the HTC is not a constant. The experimental evidence based on our environmental chambers, which contain detached houses and in which the ambient air temperature can be controlled between −24 °C and +51 °C, with additional relative humidity control and with weather rigs that can introduce solar radiation, rain, and snow, shows that the HTC is dynamically variable. The analysis of data from the fully instrumented and monitored houses in combination with calibrated simulation models and data processing scripts based on genetic algorithm optimization provide experimental evidence of the dynamic variability of the HTC. This research increases the understanding of buildings physics properties and has the potential to change the way the heat transfer coefficient is used in building performance analysis.

Keywords

Technology, dynamic variability, heat transfer coefficient (HTC), thermal diffusivity, T, time constant, energy performance, experimental evidence

Powered by OpenAIRE graph
Found an issue? Give us feedback
gold
Related to Research communities
Energy Research