Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Battery Health Prediction with Singular Spectrum Analysis and Grey Wolf Optimized Long Short-Term Memory Networks

Authors: Chengti Huang; Na Li; Jianqing Zhu; Shengming Shi;

Battery Health Prediction with Singular Spectrum Analysis and Grey Wolf Optimized Long Short-Term Memory Networks

Abstract

To tackle the intricate challenges of nonlinearity and non-stationarity in lead-acid battery degradation data, this paper introduces the SG-LSTM model, an innovative approach to battery health prediction. This model uniquely integrates Singular Spectrum Analysis (SSA) and Grey Wolf Optimization (GWO) with Long Short-Term Memory (LSTM) networks, forming a sophisticated predictive framework. By targeting key degradation features, such as the charging time of multiple voltage rise segments from the charging curve, the model effectively captures critical battery health dynamics. SSA plays a vital role by filtering outliers from these feature sequences, ensuring high-quality data for analysis and enhancing the robustness and accuracy of predictions. The refined data are then processed by a GWO-optimized LSTM network, where GWO’s bio-inspired optimization fine-tunes the LSTM parameters for optimal performance. Experimental results demonstrate that the SG-LSTM model outperforms existing models in prediction accuracy and stability; specifically, SG-LSTM achieves 0.27 RMSE, outperforming LSTM (0.84), SSA-LSTM (0.4), and SSA-BP (0.6).

Keywords

state-of-health estimation, Technology, T, gray wolf optimization algorithm, long short-term memory network, singular spectrum analysis, lead-acid batteries

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research