
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles
doi: 10.3390/en18133350
Hybrid electric vertical take-off and landing (HEVTOL) flying vehicles serve as effective platforms for efficient transportation, forming a cornerstone of the emerging low-altitude economy. However, the current lack of co-optimization methods for powertrain component sizing and energy controller design often leads to suboptimal HEVTOL performance. To address this, this paper proposes a hierarchical manifold-enhanced Bayesian evolutionary optimization (HM-BEO) approach for HEVTOL systems. This framework employs lightweight manifold dimensionality reduction to compress the decision space, enabling Bayesian optimization (BO) on low-dimensional manifolds for a global coarse search. Subsequently, the approximate Pareto solutions generated by BO are utilized as initial populations for a non-dominated sorting genetic algorithm III (NSGA-III), which performs fine-grained refinement in the original high-dimensional design space. The co-optimization aims to minimize fuel consumption, battery state-of-health (SOH) degradation, and manufacturing costs while satisfying dynamic and energy management constraints. Evaluated using representative HEVTOL duty cycles, the HM-BEO demonstrates significant improvements in optimization efficiency and solution quality compared to conventional methods. Specifically, it achieves a 5.3% improvement in fuel economy, a 7.4% mitigation in battery SOH degradation, and a 1.7% reduction in system manufacturing cost compared to standard NSGA-III-based optimization.
- Tsinghua University China (People's Republic of)
- Carnegie Mellon University United States
- Northeastern University China (People's Republic of)
Technology, multi-objective optimization, energy controller design, T, powertrain sizing, hybrid electric flying vehicles, Bayesian evolutionary optimization
Technology, multi-objective optimization, energy controller design, T, powertrain sizing, hybrid electric flying vehicles, Bayesian evolutionary optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
