
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enzymatic Biofuel Cells—Fabrication of Enzyme Electrodes

doi: 10.3390/en3010023
Enzyme based bioelectronics have attracted increasing interest in recent years because of their applications on biomedical research and healthcare. They also have broad applications in environmental monitoring, and as the power source for portable electronic devices. In this review, the technology developed for fabrication of enzyme electrodes has been described. Different enzyme immobilisation methods using layered structures with self-assembled monolayers (SAM) and entrapment of enzymes in polymer matrixes have been reviewed. The performances of enzymatic biofuel cells are summarised. Various approaches on further development to overcome the current challenges have been discussed. This innovative technology will have a major impact and benefit medical science and clinical research, healthcare management, energy production from renewable sources.
- University of Newcastle Australia Australia
- Newcastle University United Kingdom
- University of Newcastle Australia Australia
- Newcastle University
Technology, enzymes, bioelectronics, enzyme immobilisation, redox polymer, enzymes; bioelectronics; biofuel cells; self-assembled monolayer; redox polymer; mediator; enzyme immobilisation, T, biofuel cells, self-assembled monolayer, mediator, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
Technology, enzymes, bioelectronics, enzyme immobilisation, redox polymer, enzymes; bioelectronics; biofuel cells; self-assembled monolayer; redox polymer; mediator; enzyme immobilisation, T, biofuel cells, self-assembled monolayer, mediator, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).127 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
