
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Discussions on the Architecture and Operation Mode of Future Power Grids

doi: 10.3390/en4071025
The new energy revolution, of which the primary energy will be based on renewable energy sources and the terminal energy will be based on electric power, will have a revolutionary impact on the future power grids. In order to develop the corresponding power grid for the future energy system, first of all, the architecture and mode of operation of the future power grid must be investigated. In this paper, we suggest that the DC—dominant operation mode for transmission system, distribution network and distributed power system should be developed, and a MP-MC dominated transmission architecture (multiple powers to multiple consumers) and the two-way power exchange control (TPEC) should be employed to build “wide-area super virtual power plants” (WASVPPs) which cover all the major power plants in a wide range, allowing the consumers to obtain a stable and reliable supply of electricity from the “cloud powering” created by WASVPP and the distributed power system which is connected to the grid.
- Institute of Electrical Engineering China (People's Republic of)
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Chinese Academy of Science (中国科学院) China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
- INSTITUTE OF ELECTRICAL ENGINEERING CHINESE ACADEMY OF SCIENCES China (People's Republic of)
virtual power plant, Technology, cloud powering, T, charging station for electric vehicles, renewable energy, complementarities of energy resources, DC power grid, distributed power system, renewable energy; DC power grid; distributed power system; charging station for electric vehicles; complementarities of energy resources; virtual power plant; cloud powering, jel: jel:Q0, jel: jel:Q4, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49
virtual power plant, Technology, cloud powering, T, charging station for electric vehicles, renewable energy, complementarities of energy resources, DC power grid, distributed power system, renewable energy; DC power grid; distributed power system; charging station for electric vehicles; complementarities of energy resources; virtual power plant; cloud powering, jel: jel:Q0, jel: jel:Q4, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
