
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing

doi: 10.3390/en7106434
An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing
The application of a stationary ultra-capacitor energy storage system (ESS) in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation and installation cost, respectively. Then, proper mathematical models of the DC (direct current) traction power supply system are established to simulate the electrical load-flow of the traction supply network, and the optimization objections are evaluated in the example of a Chinese metro line. Ultimately, a methodology for optimal ultra-capacitor energy storage system locating and sizing is put forward based on the improved genetic algorithm. The optimized result shows that certain preferable and compromised schemes of ESSs’ location and size can be obtained, acting as a compromise between satisfying better energy savings, voltage profile and lower installation cost.
- Beijing Jiaotong University China (People's Republic of)
- Beijing Jiaotong University China (People's Republic of)
Technology, energy storage system, voltage profile, installation cost, T, improved genetic algorithm, energy storage system; energy saving rate; voltage profile; installation cost; artificial neural network; improved genetic algorithm, energy saving rate, artificial neural network, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
Technology, energy storage system, voltage profile, installation cost, T, improved genetic algorithm, energy storage system; energy saving rate; voltage profile; installation cost; artificial neural network; improved genetic algorithm, energy saving rate, artificial neural network, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
