
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reliability-Based Structural Optimization of Wave Energy Converters

doi: 10.3390/en7128178
More and more wave energy converter (WEC) concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE) is optimizing the overall system with a focus on structuraland maintenance (inspection) costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity) and the expected expenses (e.g., structural building costs or failure costs).Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
- AALBORG UNIVERSITET Denmark
- Aalborg University Library (AUB) Denmark
Technology, Wave energy, Reliability level, probabilistic reliability analysis, LCOE; probabilistic reliability analysis; reliability level; reliability-basedoptimization; wave energy; WEC; Wavestar, reliability-basedoptimization, Wavestar, LCOE, T, WEC, Reliability-based optimazation, reliability level, Probabilistic reliability analysis, wave energy, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
Technology, Wave energy, Reliability level, probabilistic reliability analysis, LCOE; probabilistic reliability analysis; reliability level; reliability-basedoptimization; wave energy; WEC; Wavestar, reliability-basedoptimization, Wavestar, LCOE, T, WEC, Reliability-based optimazation, reliability level, Probabilistic reliability analysis, wave energy, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49, jel: jel:Q0, jel: jel:Q4
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
