
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles

doi: 10.3390/en8088594
Accurate state of charge (SoC) estimation of batteries plays an important role in promoting the commercialization of electric vehicles. The main work to be done in accurately determining battery SoC can be summarized in three parts. (1) In view of the model-based SoC estimation flow diagram, the n-order resistance-capacitance (RC) battery model is proposed and expected to accurately simulate the battery’s major time-variable, nonlinear characteristics. Then, the mathematical equations for model parameter identification and SoC estimation of this model are constructed. (2) The Akaike information criterion is used to determine an optimal tradeoff between battery model complexity and prediction precision for the n-order RC battery model. Results from a comparative analysis show that the first-order RC battery model is thought to be the best based on the Akaike information criterion (AIC) values. (3) The real-time joint estimator for the model parameter and SoC is constructed, and the application based on two battery types indicates that the proposed SoC estimator is a closed-loop identification system where the model parameter identification and SoC estimation are corrected mutually, adaptively and simultaneously according to the observer values. The maximum SoC estimation error is less than 1% for both battery types, even against the inaccurate initial SoC.
- Beijing Institute of Technology China (People's Republic of)
- Henan University of Science and Technology China (People's Republic of)
- Henan Polytechnic University China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
Akaike information criterion, Technology, T, real-time, lithium-ion battery, state of charge, <i>n</i>-order RC model, n-order RC model, electric vehicles
Akaike information criterion, Technology, T, real-time, lithium-ion battery, state of charge, <i>n</i>-order RC model, n-order RC model, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
