
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electromagnetic Performance Analysis of Novel Flux-Regulatable Permanent Magnet Machines for Wide Constant-Power Speed Range Operation

doi: 10.3390/en81212407
handle: 10397/43497
Electromagnetic Performance Analysis of Novel Flux-Regulatable Permanent Magnet Machines for Wide Constant-Power Speed Range Operation
Two novel structures of permanent magnet (PM) machine, namely a hybrid excitation flux modulation machine (HEFMM) and a variable flux memory machine (VFMM), which have excellent field-weakening capability, are presented in this paper. The HEFMM incorporates the advantages of parallel hybrid excitation structure and flux modulation structure, so as to increase the torque density as well as increase the constant-power speed range. Inspired by the HEFMM, aiming to further improve the efficiency of machine, the VFMM with aluminum-nickel-cobalt (AlNiCo) PMs in the inner stator which can be magnetized by the current pulse of the direct current (DC) windings is developed. With double-stator structure, flux modulation effect in both machines can be employed to realize the hybrid excitation and regulate the air-gap flux density readily. The operation principle is illustrated and the static and steady performances of the machines are analyzed and compared with time stepping finite element analysis, which validates the effectiveness of the proposed designs.
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
Finite element method (FEM), Wide speed range, 330, finite element method (FEM), field weakening, field weakening; finite element method (FEM); memory machine; wide speed range; wind power, wind power, 620, memory machine, Field weakening, Memory machine, Wind power, wide speed range
Finite element method (FEM), Wide speed range, 330, finite element method (FEM), field weakening, field weakening; finite element method (FEM); memory machine; wide speed range; wind power, wind power, 620, memory machine, Field weakening, Memory machine, Wind power, wide speed range
8 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
