
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probability Model Based Energy Efficient and Reliable Topology Control Algorithm

doi: 10.3390/en9100841
Probability Model Based Energy Efficient and Reliable Topology Control Algorithm
Topology control is an effective method for improving the performance of wireless sensor networks (WSNs). Many topology control algorithms can achieve high energy efficiency by dynamically changing the transmission range of nodes. However, these algorithms prefer to choose short multihop communication links rather than the long directly communication links which also energy efficient probabilistic. Note that these fact, in this paper, we propose a mathematic model to explore the probability that the long directly communication links are more energy efficient than the short links. We investigate the properties of this probability and find out the optimal transmission range which has highest probability of energy efficient. Based on this conclusion, we propose the energy efficient and reliable topology control algorithm (ERTC) to maintain the r-range for the nodes instead of the k-connection; moreover, ERTC can achieve energy efficient and network connection at the same time.
Technology, T, Robótica e Informática Industrial, wireless sensor network (WSN); topology control; energy efficient; reliable, topology control, wireless sensor network (WSN), energy efficient, reliable
Technology, T, Robótica e Informática Industrial, wireless sensor network (WSN); topology control; energy efficient; reliable, topology control, wireless sensor network (WSN), energy efficient, reliable
8 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
