
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comparison of Impedance-Based Fault Location Methods for Power Underground Distribution Systems

doi: 10.3390/en9121022
In the last few decades, the Smart Grid paradigm presence has increased within power systems. These new kinds of networks demand new Operations and Planning approaches, following improvements in the quality of service. In this sense, the role of the Distribution Management System, through its Outage Management System, is essential to guarantee the network reliability. This system is responsible for minimizing the consequences arising from a fault event (or network failure). Obviously, knowing where the fault appears is critical for a good reaction of this system. Therefore, several fault location techniques have been proposed. However, most of them provide individual results, associated with specific testbeds, which make the comparison between them difficult. Due to this, a review of fault location methods has been done in this paper, analyzing them for their use on underground distribution lines. Specifically, this study is focused on an impedance-based method because their requirements are in line with the typical instrumentation deployed in distribution networks. This work is completed with an exhaustive analysis of these methods over a PSCADTM X4 implementation of the standard IEEE Node Test Feeder, which truly allows us to consistently compare the results of these location methods and to determine the advantages and drawbacks of each of them.
- University of Seville Spain
Technology, T, power distribution network; power delivery; underground distribution system; fault location, Power distribution network, underground distribution system, Power delivery, Fault location, Underground distribution system, power delivery, fault location, power distribution network
Technology, T, power distribution network; power delivery; underground distribution system; fault location, Power distribution network, underground distribution system, Power delivery, Fault location, Underground distribution system, power delivery, fault location, power distribution network
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
