Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eng
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eng
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing Digestate at Different Stabilization Stages: Application of Thermal Analysis and FTIR Spectroscopy

Authors: Silvia González-Rojo; Daniela Carrillo-Peña; Rubén González González; Xiomar Gómez;

Assessing Digestate at Different Stabilization Stages: Application of Thermal Analysis and FTIR Spectroscopy

Abstract

Anaerobic digestion is a biological process that transforms high-strength organic effluents into biogas with multiple benefits. However, concurrent with organics’ biological transformation, a liquid phase with a high solid content is also derived from this process. Valorizing this fraction is not an easy task if an agronomic application cannot be considered as a suitable option. The thermal valorization of this fraction allows for energy extraction but also gives rise to additional capital investment and increases the energy demand of the global process. In addition, the thermal treatment of digestate has to deal with a mineralized material. The changes in organic matter due to anaerobic digestion were studied in the present manuscript, by evaluating the thermal behavior of samples, activation energy, and organic transformation using Fourier transform infrared (FTIR) spectroscopy. Digested samples of a mixture composed of manure and glycerin (5% v/v) were studied. The stabilization caused a dramatic decrease in aliphatic compounds, greatly increasing the mineral content of the sample. Results from differential scanning calorimetry (DSC) indicated an energy content of 11 kJ/g for the feed material and a reduction to 9.6 kJ/g for the long-term stabilized sample. The activation energy of the feed was 249.5 kJ/mol, whereas this value was reduced to 70–80 kJ/mol for digested samples. If the valorization route selected for digestates is thermal conversion, the lower energy content and more complex structure of these materials (higher content of lignin and protein-type compounds) must be carefully evaluated.

Keywords

activation energy, mineralization, Electrical engineering. Electronics. Nuclear engineering, anaerobic stabilization, thermal valorization, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold